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An equation is constructed for the transverse vibrations of isotropic elastic bars
of centrally-symmetric cross section, which is a refinement of the Bermnoulli-Euler
equation., A comparison with other results on refined equations of bars is given,

1, Formulation of the problem, Let us consider a rectilinear elastic bar
of length 2/ and constant cross section Q in a Cartesian z, 2* coordinate system.
(The Greek indices take on the values 1, 2), In the undeformed state the bar axis coin~
cides with the x-axis, and the center of gravity with the origin, Let w, w, denote the
projections of the displacement vector on the x, 2% axes, and A the bar diameter (the
maximum distance between points of the boundary of the domain €,. The bar is loaded
along the lateral surface and along the endfaces by surface forces with components p,
Do dependent on the coordinates and the time ¢, There are no mass forces.

Let us limit ourselves to the examination of bars of centrally-symmetric cross section.
A section which contains a point with coordinates — z* together with a point with co-
ordinates z* is understood to be centrally-symmetric, In this case the general dynamic
problem decomposes into two independent problems, namely, the transverse vibrations
(w is odd, w, are even functions of x?) , and the longitudinal vibrations and torsion
(w is even and w, are odd functions of z*, see Appendix)., The problem of transverse
vibrations will henceforth be comsidered.

Saint Venant [1] solved the static problem of the transverse deformation of a bar,whose
lateral surface is load-free. The solution in terms of displacements is

w= e, (D)2* + g (@), wy = ug (2) + Yxs @RE (LY
where e, u,, X, are functions of z, g (z") satisfies the equation
nAg = — 20 [(A 4 B) % + (A + 2p)0xe,]
at all points of the section Q and the condition
a 1
—a% = —n% [ea + axua + v axxsng]

on the boundary . Here
- 3
198 —g%- \ 2B a0, R =2 (%P — %% — i (x"x,( — I;{{), 3, =3z
Q
A is the Laplace operator in the variables z®, A and p are Lamé parameters and »n”* are
components of the unit external normal vector to the contour I'.

The functions (1. 1) represent an exact solution of the elasticity theory equations if the
surface forces on the endfaces, statically equivalent to a given force and a couple, are
selected in a special way, It has been proved by Toupin [2] that the stresses caused by
a self-equilibrated load on the bar endface decrease exponentiaily with distance from
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Equations describing the transverse vibrations of elastic bars 105

the endface, An estimate v,/ h <C v has been obtained in [3] for a constant vy in the
exponential, where v, depends only on the shape of the cross section. Therefore, the stres~
ses caused by a self~equilibrated load are functions of boundary-layer type, and the Saint~
Venant solution describes the internal state of stress of the bar completely (the difference
between the Saint-VVenant and exact solution does not exceed ch? as 4 —, 0 , where ¢

is any arbitrarily large number).

The problem of the state of stress of a bar under an arbitrary lateral load could be re-
duced to the above if some solution of the elasticity theory equations satisfying the boun-~
dary conditions on the lateral surface were to be constructed successfully, However, such
solutions are obtained only in some particular cases [4 — 6], An exact solution of the
problem has been found successfully in the dynamical theory of beam bending for the
vibrations of an infinite circular cylinder whose lateral surface is load-free [7, 8], and
of an infinite rectangular bar in a state of plane strain or plane stress [9], Difficulties
in obtaining an exact solution make necessary the construction of approximate equations
for the theory of bars,

The most consistent approach is derivation of approximate equations by asymptotic
methods using the presence of the small parameter 4/ I. The papers [10, 11] are devoted
to asymptotic methods in the theory of bars. Approximate equations of the static prob-
lem of deformation of a bar loaded arbitrarily along the lateral surface are obtained in
[10] by the method of asymptotic integration of the equations of three-dimensional elas-
ticity theory., This method was used in [11] to derive approximate equations of the long-
itudinal vibrations of circular bars, Asymptotic methods have not been applied to the
problem of the transverse vibrations of beams,

The approximate equations of the theory of vibrations of bars are usually obtained by
using heuristic hypotheses relative to the nature of the states of strain and stress. The
concept of an asymptotically exact model arises in an appraisal of these hypotheses from
the viewpoint of the asymptotic approach, Namely, we call the model (or equations)
asymptotically exact if all the elastic effects whose energy is of the same order of small-
ness are included in the consideration when taking some effect into account. The model
corresponding to the hypothesis of plane sections (the Bernoulli~-Euler model) is asymp-
totically exact and yields the first approximation (see Sect. 7),

Extensive literature (see [12 — 17]) is devoted to constructing refinements of the Ber-
noulli-Euler equations, However, no asymptotically exact equations have been obtained
in the papers mentioned (see Sect, 8),

The purpose of this paper is the formulation of hypotheses for the second approxima-
tion and the foundation of the asymptotic accuracy of the corresponding model.

We derive a system of equations describing the transverse vibrations of a bar from the
condition of an extremum of the functional of linear elasticity theory [18]

iy o2
1=\a[\ (e —0)av +{(w + pow) ds] (1.2)
%

ty )
2U = A (e,®)® + 2hee,® + (A + 2p) e® + 2peqpe’® + 4ue e
8y = Wia,p)y & = 0w, 285 = Wpa + 0w,

Here V is the volume occupied by the bar, o is the surface bounding the volume V,
v is the modulus of the velocity vector of the bar particles, and U is the internal energy
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of unit volume, A comma in the subscripts means differentiation with respect to x*. The
variations at the initial #; and final £, times are considered to be zero,

Making a hypothesis relative to the dependence of the displacement vector on the
transverse coordinates and integrating over the bar cross section in (1. 2), we obtain a
functional defined in terms of functions of z, ¢.

The integrand in the functional will contain terms of different orders of smallness in
k. The n-th approximation equations are obtained in taking the variation of the func-
tional in which terms of order %®" are contained and terms of higher order in % are dis-
carded. In determining the orders of magnitude we consider that differentiation with re~
spect toz and ¢ does not decrease the order of smaliness,

It is known from the exact solutions of the problem of free transverse vibrations that
there exists a countable number of qualitatively distinct types of vibrations, and corres-
pondingly, of branches of the dispersion curve, The Bemoulli-Euler equations describe
long-wave vibrations corresponding to the first branch of the dispersion curve, Differen-
tiation with respect to time hence increases the order of smallness of the quantities by
one, We take a more general assumption in constructing refinements to the Bernoulli-
Euler equations; differentiation with respect to time does not decrease the order of small-
ness of the quantities, We consider the time dependence of the external forces to be such
that this assumption is not violated.

To obtain the second approximation equations, we take the following hypotheses rela-
tive to the displacement vector components:

w=¢, (z,t) 2* + g (x, 2% t), wg = uy (z, t) + Y, % (z, ) B3 (L.3)

In fact the displacement vector is represented in the same form as in the Saint-Venant
solution (1. 1). We assume that the functions w,, €5, ¥, are of order h°, Qg = €, +
0 5l is of order h® and g is of order h®. With respect to the extemal forces, we assume
that p ~ h%, Py ~ A®on the lateral surface, p ~ h, p, ~ h? on the endfaces.
Henceforth, for simplicity we also assume that p = m, (z, t) x* on the endfaces. The
foundation of the hypotheses (1. 3) is considered in Sect. 7,

Because of the definition of R P ,the functions u, (z, f) have the meaning of a
mean transverse displacement u, (z, £) = {wy).

Without limiting the generality, the constraint

gr*> =0 (L4
can be imposed on the function g .

2, Second approximation equations, Aftersubstituting (1,3) into (1.2)
and discarding small terms of order 4% and higher, we obtain a second approximation
functional 1

2 = pQ Sdt S (Oasadu® + I3 0a005 -+ {6— (RER™ a,xaatx,a) dz — (2.1

ty —l
123

Qdr ({10 + ) toto-+2Aaato - (-+-200) Dstadts] Iy} dat

ty —1
[

Sdt& (2pau“ + 2pe.z* + % paxaR*® ) ds

ty a
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ai at y <A> =L AdQ

®——[§(% _xXBR¢+ga) 9——Spgdl‘] (22

The function g enters J just in terms of ®. For p = 0 the quantlty pu®@ has the
meaning of a shear energy, The required value g evidently makes the functional @

a minimum, The minimum value @, of the functional @ is a function of @y, 9 ,Yq-
Setting @ = @, in(2. 1) we obtain a functional defined by functions of z and £ Va-
riation of this functional results in the second approximation equations and boundary
conditions. To evaluate ®, in the functional (D it is convenient to introduce G as
the required function in place of g by means of the formula

G = g+ 22 [pg + YVao (RE — 4I% + 2680%) 0. %l (2.3)
Condition (1. 4) for the function g goes over into a condition for G
(Gz*) = %*, n* = I8 @g + TBd.xp (2.4)

Tab = Y, (J28]% + Y 7 — 21]f), Iebv = (zrzPzvay
Seeking the minimum of the functional @ and G according to the condition (2, 4), we
obtain
AG = y,z* (2.9)

G B 1
- = 3 (6% xY—zax)n“axxﬂ—{—Tp on T

Here ¥, (Z, f) are Lagrange multipliers corresponding to the condition (2.4). The
boundary condition for the function G tums out to be simpler than for g. The function
®, (%q, Ox%Xo) is a quadratic form of its arguments and can be represented as

20, (%q, OxXa) = A®BON0xYa + Baﬁ”a"ﬂ + 2C**xq0 xYs (2.6)

The tensors A%® and B®® are symmetric,but C*f is generally nonsymmetric. They
all depend on the geometry of the cross section and the longitudinal load on the lateral
surface p. These tensors can also depend on z, ¢ because of the dependence of p on
Z, t. They are determined just by the cross-section geometry for a zero longitudinal load
on the lateral surface,

It follows from the expression (2. 2) for @ that @, ~ k4 The coefficients in (2. 6)

are of the order of A% b, BB h-s, (b
Varying the functional (2, 1), we obtain an equation for u,
p02uy — Youly (0.54e%® + 0,2CyaX?) = Po / Q 2.7
Yyl (Byx® + 9.CeXf) =F (Pad, ==TF!
The equation for €, is
pdtes — Mada — (b + 20)0.%, -+ Yop (B + 0.CPxs) = No/Q (2.9)
It (Mxp -+ (A + 2p)0.e0) = F <PZad, *T=7F!

The equation for X is



108 V.L.Berdichevskll und 35.,5.Kvashnina

00.2%a (RoxR¥Yy + 1615 [(M + p)ys -+ A0e) — (2.9)
8” [ax(TaYBg' + Cl'ﬂoz)%B + 0x2 (TocYCYB + AaB)XB] = 4Dcr,/gz
B [(TgB® + Cogh® + 9, (TaCys + Agp)x®] = T Yy <PeRED
: X == _—i_“l

Here )
DaszngdI‘, Pa:SpadFy Naszxadr
r P T

8. Resolving equation, We obtain the resolving equation of the system(2,7)—
(2. 9) which is a refinement of the Bernoulli-Euler equation. Since the inertial and trans-
verse forces in this latter are of identical order of smallness, and differentiation with re-
spect to x does not change the order of magnitude, it should be considered that differ-
entiation with respect to ¢ increases the order of smallness by one. This assertion is va-
lid if short- wave processes are excluded from consideration [19].

Solving the system (2, 7) — (2. 9) for u, discarding the small terms I5,4us because
of the assumptions made, and considering the coefficients of the quadratic form (2, 6)
independent of z, we obtain

p0u, + EI Ea;ua — 0l%020,2us + E VE3,up = (3.1
& [ Pe+0Na+ 8.2 |
Q 2
where £ is the Young's modulus, v is the Poisson's ratio, and ¥,p is a symmetric ten-
sor defined in terms of the coefficients of the quadratic form (2. 6)
- - 2 -
Wap =4 (14 %) Bab + 49 (ClarB ™+ Tag) + iy (CraB ™™ Cu— Aog)

Here Bj denotes the tensor inverse to B,z and BoiB8v = 8. Equations (3. 1) are
second approximation equations for the mean displacements u,, of transverse vibrations
of a bar of centrally-symmetric cross section, In comparing the second approximation
equations obtained by different authors, it should be kept in mind that mutually equiva-
lent equations within the framework of this approximation can differ in form [19]. In
fact, let us represent the resolving equation in the case of free vibrations in the operator

form (Ly + R2L)u = (M, + h*M,)P
where L,, M, are operators corresponding to the Bernoulli-Euler equation. All equa-
tions of the form (L, + WLy )u = (M, + W2M,)P
are equivalent to the given equation if (D is some differential operator)
L, —L,=DL,, My, — M, =DM,

Selecting the operator D in a suitable manner, we obtain the resolving equations equi-
valent to (3. 1) but without the term 9, %up

PO s + EIe0bus — p 112 + T77¥3) 80, u = (3.9
= [P“ 4 0N, + 5 0,2Do — I5¥ 10,2 (Pg + axzvﬁ)]

(Iz6 is the inverse tensor to Iqg).
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4, Coefficients of the resolving equation,separation of the
vibrations and symmetry of the cross section, The system (3.2) con-
tains two equations for the displacement vector component u,. In general, the vibrations
of one axis of the bar cause vibrations along the other. The question arises as to whether
a coordinate system x*exists in which the vibrations along two axes turn out to be inde-
pendent ? The answer to this question is affirmative for the first approximation equation,
since the tensor /28 can be reduced to diagonal form by an orthogonal transformation.
In the case of a second approximation equation, the answer is related to the symmetry
properties of the cross section,

The cross sections can be classified by referring to one class of sections which are in-
variant relative to the same subgroup of a group of orthogonal transformations on a plane.
Each symmetry group will contain a rotation through the angle 7 since the section is
centrally-symmetric.

The tensors (4. 1) are invariant relative to the symmetry group of the cross section.
(This assertion is valid if the longitudinal load on the lateral surface p has the symmetry
of the cross section), According to the German-Hermann theorem (see [20, 21]), a ten-
sor of second rank which is invariant relative to the group of rotations containing a rota-
tion through an angle less than nuis spherical, Hence, *A*® = A§*® ,etc., for all ten-
sors (4. 1) for cross sections invariant relative to such groups. According to (3. 2), the
transverse vibrations are separated in any. orthogonal coordinate system,

Shown in Fig. 1 is a cross section which is
‘ invariant relative to rotations through 7 / 2.
—: The tensors introduced above which character-
ize this cross section are spherical, and the
corresponding bar will behave as a circular
bar for transverse vibrations in a second ap~
proximation, This fact was not evident be-~

| forehand since not even two axes exist in the
‘ initial three-dimensional problem along which
Fig. 1 Fig.2 the transverse vibrations occur separately,

There are just two subgroups of the ortho~
gonal group which contain no rotation through an angle less than . One consists of two
nontrivial (different from the identity) transformations: rotation through an angle s and
reflection relative to some axis L. In this case, by selecting the x'-axis along L, the z*-
axis perpendicular to L, we obtain A!* = A?! = (0 ,etc, for all the tensors (4, 1) from
the condition of invariance of these tensors,

Therefore, the tensors (4. 1) are simultaneously reduced to diagonal form in the z!, 22
coordinate system and according to (3. 2) the vibrations along z! and z* are separated.
Examples of such cross sections yield an ellipse and a rectangle,

Another subgroup contains one nontrivial transformation: rotation through the angle .
(An example of such a cross section is presented in Fig. 2). The tensors (4. 1) can have a
most general form, Nevertheless, even in this case coordinate systems in which the vibra-
tions separate can exist in principle, It is easy to see that the necessary and sufficient
conditions for separation of the vibrations are the equalities J3W#Y = J;WP* resulting
from the theorem about simultaneous reduction of two symmetric matrices to diagonal
form by an orthogonal transformation,
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6, Examples of evaluating the function G and coefficients of
the resolving equation, In those cases when the Neumann problem (2.5) admits
of simple analytical solutions, the coefficients A%, B8, C*8 of the quadratic form
@, in (2. 6), and therefore, the coefficients of the second approximation resolving equa-
tion (3. 2) can be calculated. Presented below are results for a circle, a circular ring, an
ellipse, and a rectangle under the condition that the longitudinal force is p = 0 on the
lateral surface,

1°, Circle of radius r

== (3r — ZPxg) T,
A T sas o __ 2-96 cap af __ 2 cap
27 8%, B Tre &, 7= 3 8

aa__i4v’3+12v—}—7 ap
¥ T 48 1+ 8

2°, Ring with radii r; and r,

12
= Tr + Sbrirat 1 Trgb (3 :: i +3(r® +re?) — xﬂ‘zﬁ) T%q
aB r1 ~+ ri%ro? 4 rot ap af __ 2.96 ap ap 2 nap
4 27 -6 B _7r14+34r12r23+7r246 ’ ¢ _”‘3—8
a 1 4v2 - 12 9
¥ = T 5dAF v)[ i g i (7T1‘+34?‘12r22+7rz4)+"(v+3)(’14+r1zrzz+rz‘)J5aB

3°, Ellipse 2/ a* 4 2,2/ b 1

G = % Pax“xﬁxﬂ —I— T(E;;—i-—bz)— {[—21— ((12 —_ b2) (31'22 — xlz) — 3a? (202 + b‘):lI'l—
2@ — )32 — 2 + 30 00} @1 + [e o b, 4 2]

1
17 A (5eF 289

bt (814t - 304202 + B%) By, = 48 (3a2 4 8?)

r [“Tz (b4 4 4a?® — 5a4) O3, — 24 (3a® + b?) xl]

An = 108 (322 + %) (5a + 289) ’ 17 44 (542 F 28%)
Coi e 2 D260+ 1Y)
n= e (5a2+2b‘-’)
A S14(1 +v)*a? (50° 4 26) — v (1 + ) X

=TIv a8 (3a5 Ny
(3a% + 64 — b*) — 4viDH)

The symbol [a «> b, 1 «> 2] denotes the preceding component with a and & and
the subscripts 1 and 2 interchanged. Values of I'y, Agy, Byy, Cgyy ¥4e are obtained
from the formulas for I';, Ay, By, Cyy, ¥,, by the replacement a'< b and the
subscripts 1 <> 2. The remaining components of the tensors A28, B8 (et Wab
are zero on the principal axes of inertia,

4°, Rectangle |z, |<(a, |z |<b

G= {%-[(:vf —3a®) T, + (%xf + b — 02) 0::)(1] +
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26 S {(— 1)n niry . mtm _
-T?(‘n=1 n3ch (nna/b) Sh B cos axXl} _|_ [aH b {1 2]

%xax“xﬁaxxﬁ
5 b2 2a? 9
Ty= g [ (7 —75) 01— ]
79 4w 1 b 15 562
a nit
1411=a,“(m;——--7'ﬂ—5 Zl—n?thT), Bll:_aT' Cllz—g-aT
n=—

2 [5v46 , 2 (250— 79t nb
Y= 3"‘[v +11v( sos 5 n52n5th—)]

The values of Ty, A,y, B,y, Cyy, ¥,, are obtained by the replacement g «> b and
the subscripts 1 «» 2, while the remaining components of the tensors A%#, B8, (9B,
Yap are zero on the principal axes of inertia,

In particular, for a square with side a

79 4 1 ap ap __15cap ~ap __ 5 nap
27-“45"?@1?&"“)5 , B =—28", ¢ =

oo

AP — gt (

o

l]E""‘B=-—§—a [5v+6+1_v:v(jb 211 thnn——)]&“ﬂ

6. Dispersion equation, A dispersion equation,the relation between the fre-
quency o and the wave number k for which the functions

Uy = u,’eilet-kx) g ° — const

are solutions of the problem of free vibrations of an infinite bar, can be obtained from
(3. 1) or (3.2). Correspondingly, we have for (3. 1) and (3. 2)

(p0? — EKA, + po?k2],, + EESY ) (po® — EKA,, 4 po?k?l,, +  (6.1)
Ek*Yy,) = (po?k*ly, — Ek'I,, + ERSTy,)?

[ow? — EKL, + po?k? (I, + YiILD] [pw? — Ek,, + (6.2)
p0h? (I, + Y31 = [pk? (I, + Vi) —
Ek L) lpw?k? (I, + W3IL)) — ERILL,)

The dispersion equation is an invariant characteristic of a mechanical system, hence
(6. 1) or (6. 2) should yield a second approximation to the exact dispersion equation cor~
responding to the three-dimensional problem.

As is known, the exact dispersion equation has an infinity of branches. The Bernoulli-
Euler equation describes "slow vibrations" and corresponds to the branches w, (k) for
which o, (0) = 0. Hence, the approximate dispersion equation considered should refine
precisely these branches.

An attempt is made in many papers to describe simultaneously two branches of the
dispersion curve , (k) and o, (k), ©; (0) = 0. In this connection, it should be empha-
sized that the order of smallness is decreased by one for the other branches by different-
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iation with respect to z and ¢ hence, the problem remains essentially three-dimension-
al and the meaning of the one-dimensional approximation requires explanation.

The second approximation can be constructed by means of the exact dispersion equa-
tion of the three-dimensional problem and the equation in the £ — ¢ representation
can be reproduced by means of the approximate dispersion equation. Confirmation of
the asymptotic accuracy of the approximate equations can be based on this.

Pochhammer [7] constructed the dispersion equation of the three-dimensional problem
f (®, k) = 0 for a bar of circular cross section, Expanding f (w, k) in a series in @, &
and keeping terms of the order of 7* and r*, we obtain

po) —_ —-—r%‘ + 8v+ 29 riw** — E ﬁ%ﬂkﬁ =0 (6.3)

After substituting the value of ‘I’aB for a bar of circular section into (6. 1), this latter

differs from (6, 3) by the term

8 23 E
V;l: 2 (pm2 . Tr%‘)

i,e. they are equivalent in the sense mentioned in Sect, 3,
The values of W 4 calculated in Sect, 5, permit writing a second approximation equa-
tion in cases for which the exact equation is unknown.,

7. Asymptotic accuracy of the hypotheses (1,8), We represent the
displacement vector of a point of the bar w™* (z, 2%, ¢) as
wt (z, 2%, 1) = ul (2, 1) + ei (z, )z* + l/inp (2%2® — I°P) + gi(z, 2%, 1)
im0,1,2
The subscript ° is ordinarily omitted in writing the projections of the vectors and ten-
sors on the 2% axis,
Let us require that the functions g* satisfy the constraints

gh =0, <gha® =0, <P =0 (1.0

Then the functions i, e € Xaa will be defined uniquely in terms of the functions wh,
namel
y ul(z, t) = <why, e, (z, t) = I <w‘xﬂ>, xaB (z, t) = 13 <w T vy
A mutually one-to-one con'espondence exists between the set of functions {w!} and a
number of sets {ul, e, Xaev g}, We obtain the system of equations for the functions uf,
e, Xaav g* from the condition for the extremum of the functional (1. 2). Hence g is an
odd and g* an even function of z*in the problem of transverse vibrations, The system
of constraints (7. 1) reduces to the constraints

€% =0, <gz® =0, (g =0 (.2

We obtain the following system of Euler equations and boundary conditions in the varia-
tion of the functional;
Equations for u,
patu, — pdx (Pg + <g4d) = Po [ R (7.3)

B(g, + <ggd) = F <Py z=TF1
Equations for e,
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B9y + <grgd) — I (Mxxy + La(e)) = N,/ Q (1.4)
I (g + A+ 2p)0e) = Fpa™, =z =F1
Equations for x%8v
20 Bgya (0 + 9xe,) + 20 (hapyy Iy + X)) —
Y.L, ()(,‘.“,l,,)<(:c":c:pL — 1% (zgzy — Igy)> — <L, (g,) Zgz,> —
W(zgzy — Ig,)0xg o>= Dygy | @
B (Va0 Xapot @Bz — 1P (2¥2® — 1™ +
(2’ — 1) (g4 + 0:g,0) = TF <p, (P2 — 1%, ¥ =FI
Equations for g

(7.9

pAg + (A + Waxgh 4+ Ly (8) = pay, (2, 0) (7.6)

1
(g,a+ 0,8, + @y 1 %‘ax'x@.ﬁv (xBxY— Iﬁ?) ) n® = FP onT
Ay + (At 2W0xg = Fp+ A (z, )z, z=F1!
Equations for g,

B8, + (1) 22048 + 83) + L1 (€0) + L1 (hagy) @27 — 1) = Ayes ) (1)

A (0xg + gfa,s)n‘,L + 2ug(u,a)nﬂ = p, + laﬂyzﬁz* on T
B lgs + 028y + Put VadxXapy &P — I =Fp,, z=F1
Here
DY = S py (@Pz” — IPY)dT, Li=pds—pd2, La=(h-+2u) 02 —pd,?
T

Yo = ¥pq
Yas Aa» gy Ayg, are Lagrange multipliers corresponding to the conditions (7. 2).

The system of equations (7.3) — (7.7) is an exact system of equations describing the
dynamical bending of a bar of arbitrary thickness. It can be shown that this system is
equivalent to the classical equations of three~-dimensional elasticity theory. To estimate
the orders of the required quantities, we make the change of variable z% — hz* . Then
0<<* K 1.

The system (7. 3) —(7.7) can be investigated as a system containing the small para-
meter s by using formal asymptotic expansions, We hence consider that differentiation
with respect to = does not change, but differentiation with respect to ¢ does increase’
the order of smaliness of the quantities by one,

Let us represent the required functions and the given extemal forces as the following
expansions in & (f is any of the functions ug, e;, n» Yupy: & £o):

p= 3w
8=0

(-
— 8 O
P =W ) KPP, Ny= w3 &'NY, D =h S\ D8,
=0 =0 =0
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R oc
Py = N3 Z hb'p;s)' p == k2 Z hsp(s)

$=0 =0

The hypothesis about the nature of the differentiation with respect to time corresponds
to the fact that all the functions depend on ¢ in terms of the parameter T = hz. The
expansions for the extemal forces are selected in such a way that the expansions of the
functions required could start with 2° but not with negative powers of A.

Substituting these expansions into (7.3) — (7. 7) and 'equating coefficients of identical
powers of 4 will yield a system of recunsion equations (A is the Laplace operator in the
variables z.)

paIZu‘(zk-”_ p.ax ((Pc(xk) + (SS£+1)>) — p&k—z) /S (7.8)
m (q>(a") + <g(,al§+1)>) _ Jay (Aaxx(yk_2) 4+ (A 2p) axzeilkﬂ) . (7.9
patz e‘(fk—A)) — N;k-lz)/ S
20 (0ay o + axe(vk)) 4+ 2u (xfgé)vj:( + x&) Jh— s (Hafng,{;” _ (1. 10)

PO 2L <(z° 2" — TV) (242, — T 0> — (10,26 — 00,2 ) 752, ~

; k-2)
B d g5 (zpz, — T > = DED S

RAEE) £ (1) 0,5 + (b +2p) 0,26 — pa g e e (T.1)
nBg® + (b4 1) 2 0,857 + ¢B) + o 26— 00,26l Y+ (1.12)
a
12 (3 2 YYD — 00 205 ) (P2Y — T8 = AL
Here
gq=0g/0z,, §=Q[n J® P/

A recursion system of boundary conditions corresponding to (7, 8) — (7. 12) can be ob-
tained by similar means, Solving (7.11) for £ = 0,1,2 and (7. 12) for k =0, 4, 2, 3
successively for the appropriate boundary conditions, we obtain that ¢, ¢®, ¢, respec-
tively, are the first nonzero coefficients in the expansions for ¢,, g, g, . All the quanti-
ties with negative ordinal numbers are hence set equal to zero and the solutions of (7.10)
for Xapy for k = 0, 1 are used,

Let us solve (7. 10) in a first approximation. It is easy to confirm that any third-rank
tensor which is symmetric in the last two subscripts can be represented as (the symmetri-
zation operation is marked by parentheses)

Tagy = Y(aByy T X@n8 = X@va (7.13)
In a first approximation (for © = 0) (7. 10) is of the form
2Mv(vbﬁ)a. (xso) + ax eﬁo)) + 2 (X(O)(a%)fvv + x(o)(w:)JBv) =0 (7. 14)
Performing a convolution of (7. 14) with 6*® and 8" in sequence, we obtain after cal-
culations © A
Xa)z—maxeﬁ?) (1. 15)
Xm%)v =1 baﬁxS(O) (7.16)

From (7. 13) and (7. 16) we have
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'/.gz?’gy =1 2 (X(YO)aaB + Xg')sav - x(a(’)aﬁv) (7' 17
For & = 1 Eq. (7. 10) agrees with (7. 14), and therefore, its solution is given by (7. 17)
and (7. 15).
In a first approximation, we obtain the Bermnoulli-Euler equation from (7. 8),(7. 9) and
(7. 15), We therefore have for the orders of the required quantities

Qe ~ h?, g ~ B3, 8a ~ h4
After substituting the displacements in the form

W= ea® g, wg = g+ Ukepy (B — IP) + g,

it can be seen from the formula for the functional (1, 2) that the integrand contains terms
of the order of A%, k4, 18, where the components containing g, are of the order of k* and
should be omitted in deriving the second approximation equations, Therefore, to obtain
the second approximation it is necessary to set g, = 0. Computing ¥,g, by means of
(7. 17), we obtain the following asymptotically exact representation of the displacements;
w = eaxa + g, wy = uy, + l/‘XB[‘lg.

The case when differentiation with respect to time does not alter the order of small-~
ness of the quantities is considered similarly and results in the same representation for
the displacements,

8, Comparison with other results from refined theories, To obtain
one-dimensional equations of the theory of bars, the method of hypotheses and the me-
thod of series expansions in the transverse coordinates are usually applied,

The classical Bernoulli-Euler beam vibration equation is based on the hypothesis for
the displacements
= _axua (.1,‘, t)x“, Wy = Ug (31 t) + 1/4X.3 (J?, t)RGB (8.1
Suhstituting (8. 1) into (1, 2), assuming that differentiation with respect to ¢ raises the
order of smallness by one, and discarding terms of order % and hS in the integrand, we
arrive at the functional

sy 1 o1
r=afaf (—;—pa,uaatu“ — F)ds + (at § @aP* — 0.02N") do+-
i

-—l f1 -1

(8.2)

iy

l
S dt [ua {p*> — Oxlta <pz“>] l
A -
F = Y, I [(A 4+ p)xaXs — 2MYa0tug + (M + zll‘)ax’uaax’uﬁ]

The functional (8, 2) differs from the Bernoulli-Euler functional in the form of the func-
tion F. In order to obtain the known expression, we note that the parameters Y, enter
into the functional (8, 2) without derivatives, hence, the Euler equations for )4 are alge-
braic and easily solved y = by

»= A+ |
Substituting the value of Xqinto the expression for the elastic energy of unit length F

i 1
results in the formula F = V,EI*®3 3u 0 *us
The Rayleigh equation [12] is substantially based also on the hypothesis (8. 1) and cor-

responds to the fact that the component pl289,d (u,8;0 U of the order of h* and des-
cribing the rotational inertia of the cross section is kept in the functional (8, 2). It follows

02U,
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from the above that the Rayleigh model is not asymptotically exact,
The Timoshenko equation [13] is based on the representation of the displacement
(1.3) which is valid for the second approximation. However, hypotheses reducing to two

equalities (oiaPy =0, go = kpQq,, (8.3)
(0%F = QU / Oeqp, Oq = oU / 0eqy 4o = Q(0q>)

(9, are the transverse force components and k is the shear factor) are used in place of
the solutions of the equations written above for the functions %, and g . From (8. 3)

follow A
o =— 555 0sfar  Pat<8ad = ha (8.4)

respectively, and the system of equations for the functions u, and e, tums out to be
closed. Solving this system for u,, we obtain the Timoshenko beam equation. In the free
vibrations case it has the form

00 2uq + BI04 — o128 (14 57) 020.%up + T2 80fup = 0 (8.9)

It follows from the results of Sects. 2 and 7 that the relationships (8. 4) are not correct
in the second approximation, The shear coefficient % in the Timoshenko model is con-~
sidered dependent on only the shape of the cross section, It should be emphasized that
if k is introduced by using the second formula of (8.4), k = ¢, / (uQg,) (it is under-
stood that such a definition is possible if the vibrations occur in the (z, z;)-plane) and
is evaluated by the asymptotically exact theory, then % will depend not only on the
shape of the cross section, but also on the extermal load (even for p = ().

Another method of defining the coefficient & can be proposed, Let us discard the small
last term in a second approximation in the Timoshenko equation (8.5). Then (3.2) and
(8.5) will be identical in form, For a complete agreement between the equations descri-
bing the vibrations along the x,-axis (in cases admitting of separation of the vibrations),
k should be defined by the formula

E (In)?

k= ST o (8.6)
A considerable quantity of papers (see the survey {17]) is devoted to evaluation of the
shear coefficient % for different cross sections, To evaluate k¥ Timoshenko used the
stress distribution in a section according to elementary theory. A solution of the Saint-
Venant problem about a cantilever beam was used in [22] to evaluate &k by means of the
second formula in (8, 4). The equations in [22] have been obtained also by using the
hypotheses (8. 3) and are therefore not asymptotically exact,

For the cases of a circle, ellipse and rectangle, the formula (8. 6) yields, respectively,

4vE 4 12 7 .

k1 = _26—'(-"1-.__'__%;—. (circle) (8.7
4(1 2 (54 2m-2) —4vim—4 —v (1 3 - 6m-2 — m—~ '

o A VG A+ 2m )6(1:_?)’(3_:;_-:?)( +6m-2 —m )(elhpse) 5.5
191+v2 - 594v 4 324 V2 5 6 & 9

k-1 —= 270 (1 + v)2 + A F v (a"m"-*- m—_x Z—Fthm-l) (8,9)

"=l (rectangle)

Here m = a/ b, the semi-axis & is along the x,-axis. For vibrations along the x, -
axis, m should be replaced by m~! in (8.8) and (8. 9).
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Presented below are numerical values of the coefficient k for a circle and rectangle
for v = 0.3 from the data of different authors

[13] [22] [14]  Formulas(8.7), (8.9)
Circle 0.750 0.866  0.614 0.930
Rectangle 0.833 0.850 — 0.872 (m =1)

We note that in the case of a rectangle & is independent of the ratio between the sides
m according to Timoshenko [13] and Cowper [22]. It is seen from (8, 9) that this assump~
tion results in large errors in the evaluation of % corresponding to vibrations along
different sides of the rectangle, For example, the values of k differ by 35% even for

m =3 (at v = 0.3).

It should be emphasized that defining & by (8, 6) permits only the attainment of agree-
ment of the resolving equations. The system of second approximation equations (2. 7) —
(2. 9) and the system of Timoshenko equations generally remain different,

The approximate equations of transverse vibrations of a circular cross section bar were
obtained in [14] from the three-dimensional dynamic equations by using a formal sym-
bolic method. Ashas been shown in [23], the approximate equations of [14] are not agym-
ptotically exact and do not agree with the Pochhammer equations. We note that the me-
thod in [14] is only suitable for a circular bar,

Expansion of the displacement vector into a double power series in the transverse co-
ordinates and integrating the dynamic equations of three~-dimensional elasticity theory
over the bar section reduce the initial problem to an infinite system of one-dimensional
differential equations, Jacobi or Legendre polynomials are sometimes used in the expan~
sions, Different approximate theories are obtained by cutting off the infinite series. This
method was used in bar theory mainly to derive the longitudinal vibrations equations.
The second approximation equations for transverse vibrations were obtained in [15, 16]
by the series expansion method, Methods of cutting off the series mentioned in these pa~
pers do not yield asymptotically exact equations. It should also be emphasized that the
displacement vector in a second approximation cannot be represented as a polynomial
in a finite power of the transverse coordinates for every cross section, For example, ac-
cording to Sect, 5, the displacement vector in a second approximation is not a polynomial
for a rectangular or annular section,

8., Appeandix, Separation of transverse and longitudinally tor-
sional vibrations in bars with centrally-symmetric cross section,
Let us consider an anisotropic, linearly-elastic rectilinear bar with constant centraily-
symmetric cross section, There is a plane of elastic symmetry perpendicular to the axis
at each point of the bar. The bar is generally inhomogeneous, however its elastic proper-
ties are centrally-symmetric.We show that the transverse and longitudinal-torsional vi-
brations are independent in such a bar,

The concept of evenness can be introduced for functions defined in centrally-symmet-
ric domains, Each function is represented as the sum of an even and odd function (the
even functions are later denoted by a double, and the odd by a single prime).

Let us consider the appropriate representation for the displacements

w (2%, z, t) = v’ (2%, 2, 1) + v (2%, 2, 1),

wy (&, 7, £) = w,' (2P, 2, 1) + w," (2P, =, 0)
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The arguments z, ¢ enter as parameters into these representations, Differentiation
with respect to z and ¢ does not change the evenness, but does it with respect to z*,

Because of substituting the representations mentioned into the functional (1. 2), this
latter is separated into the sum of two functionals, one of which depends only onw,”, w’,
and the other on w,’, »". In fact, the strain tensor components e,5’, &, €,” depend on
w,”, w’, and the components e,,", &", £,"0n w,’, w". There follows from the central
symmetry of the elastic properties that the components of the elastic modulus tensor are
even functions of z* and from the existence of a plane of elastic symmetry that there
are no products e,.e* and ee@ in the elastic energy. Hence, the integral of the elastic
energy over the cross section is separated into a sum of two integrals, one of which con-
tains ¢e,4’, ¢’ and e,” and the other ¢,,", €, ¢,’. Similarly, the integral of the kinetic
energy over the cross section can be separated into integrals dependent on d,w,”, 0w’
and dw,’, daw". Because of the linearity, the functional describing the work of the ex-
temal forces is separated correspondingly,

The variational problem under consideration is separated completely into two indepen-
dent problems since the even and odd components of the functions can be varied inde-
pendently, It is natural to call the problem containing the even component of w, and
the odd component of w the problem of transverse vibrations and the problem contain~
ing the odd component of w, and the even component of » the longitudinal-torsional
vibrations problem.,

The authors are grateful to L, I, Sedov, E. I, Grigoliuk, V, V, Lokhin and A, N, Golubiat-
nikov for discussing the research,
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EQUILIBRIUM OF A SLOPE WITH A TECTONIC CRACK
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Equilibrium of an elastic half-plane with a rectilinear crack reaching the haif-
plane free boundary at an arbitrary angle is considered as a plane problem of the
theory of elasticity. It is assumed that known compressive stresses are applied at
considerable distance from the crack forcing the opposite boundaries of the crack
to contact each other, Interaction between the crack boundaries are defined by
the law of dry friction with cohesion. Mathematically this problem is analogous
to that of a tectonic crack filled with a low-strength medium, First, the problem
is stated and fundamental relationships are presented. The Wiener-Hopf equation
of the considered problem is derived with the use of Mellin transform and Jones
method, The exact analytical solution of the Wiener-Hopf equations is then



